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AbStraCt Laser Units
Tandem-type color printers have four photoreceptor drums W
which respectively transfer four colors, black, yellow, cyan, (

Laser Beam

magenta, to fed papers. A major factor of the color registra-

. . . . . - Ch

tion error in that printer is the rotational deviation of drums. & g per

If the drums are driven by gears, the transmission deviation 8 j
.

caused by eccentricities of gears yields the rotational devia- o O 9( )8m

tion. Therefore, to achieve fine printing quality, it is important Photorecepmr Drum

to clarify the transmission behavior of gears with eccentricity. O/
In this paper, we formulate the transmission deviation in Fuser Unit Transfer — . Roller

multi gear systems in terms of the magnitudes and phases of |_| |_|

eccentricities of gears. We describe the ratio of rotation ve-

locities of a pair of eccentric gears by the inverse ratio of the Figure 1. A tandem-type color printer

rotation radii, and solve it as a differential equation of rotation
angles. The obtained solution gives an expression of the rota-
tional deviation. Experimental results under practical condi-

tions ensure validity of the proposed formulation. Then, wesolve it to compute the rotational deviation in angle and the

extend the formulation to general multi gear systems. For thig@nsmission deviation on the pitch circle. The solutionis ver-
optimum design, we can utilize it to calculate the mlnlmum|f|ed by experiments. In this way, we obtain a formula of the

transmission deviation achieved by appropriate adjustment 6fansm|ssmn deviation in terms of the magnitude of eccentric-
phases of eccentricities. ity of each gear and relative eccentricity positions, namely,

phases of meshing gears. We can use this result to reduce the
transmission deviation by means of the phase adjustment.
1. Introduction

In tandem-type color printers, rotational deviations of drums 2. Multi Gear Systems for Driving Drums
induce registration errors of four colors. A major factor of
the rotational deviation is the transmission deviation caused@he tandem-type color printer is composed of four drums as
by the eccentricities of gears in driving systems. While ashown in Fig. 1, where the image of each color (black, yel-
number of analyses for a pair of eccentric gears have bedow, cyan, magenta) is developed on the surface of a corre-
reported->-3, there is no study on the transmission deviationsponding drum. After development, the drums transfer the
in general multi gear systems as far as the authors know. images to the fed paper sequentially to realize the full color
In this paper, from the viewpoint of the practical printer image. Generally, the drums are driven by one common mo-
design, we consider the position deviation on the pitch circlgor through four gear systems which transmit the rotation to
as the transmission deviation, and clarify the effect of ecceneach drum as shown in Fig. 2. If the rotational deviations ex-
tricity on the transmission deviation in multi gear systems.ist on the drums, the images on the drums are not developed
We assume that the ratio of rotation velocities of a pair ofidentically in space, even though the scanning intervals of the
gears is equal to the inverse ratio of rotation radii. We writelaser units are identical in time.
this relation as a differential equation of rotation angles, and
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Figure 3. Meshing two gears modeled by Asano®

3. Formulation of Transmission Deviation

To compute the transmission deviation caused by eccen-
tricities of gears in multi gear systems, we first formulate
the transmission deviation of meshing two gears. We then
compare the computed result with an experimental result.
Based on this experimental verification, we extend the for-
mula to the case of meshing three gears. We assume that
the pitch and base circles are perfect in the following anal-
ysis.

3.1. Transmission Deviation of Meshing Two Gears

Before we present results of this paper, we review a result
by Asano? for meshing two gears. In Fig. 3, Gears 1, 2 are
the driving and driven gears, respectively, which are eccen-
tric. Let C, D be the centers of the base circles of Gears
1, 2, and 741, Tp2 be their radii. We denote the pressure
angle by a, the line of action by EF, and the centers of
rotation of Gears 1, 2 by A, B, respectively. The counter-
clockwise angle ZC' AB and the clockwise angle /DBA
are denoted by 6; and ©5. The rotation velocities of Gears
1, 2 are w; and ws. Then, the ratio of the rotation velocities
wy/we = dOy/d8 is given by AG / BG where G is the
intersection of the lines AB and EF. Thus, the follow-
ing equation is obtained, where /, e, e are the distances

Pitch Circle

Pi} Circle

Figure 4. Proposed model of meshing two gears

between A and B, A and C, B and D, respectively.

F r51{(£ — e2cos @2 — e cos H;)? b
+(61 sin 81 — es sin 92)2}
+61(Tb1 + sz)
-{(€ — e2cos O2 — ey cos b1) cos By
+(e2sin ©2 — e sin 6 ) sin 6, }
+e1{(e2 cos ©2 — £) sin 6,
+e2 sin ©5 cos 91}
{(€ — e2c0s @2 — e cos §;)?
+(e1sinf; — ez sin ©)?
de2_ L —(ro1 +T1>2)2}% J
do, I Ts2{(£ — e1cos 61 — ez cosb)? R
+(e2sin ©; — e; sin 6;)?}
+ea(rp1 + To2)
{(€ — e1cos 81 — e cos O2) cos O,
+(e1sinf; — ez sin O2) sin O3}
—e2{(e1cos b, — £)sin O,
+e1sin6; cos Oz}
{(€ — e1 cos 81 — ez cos O3)>
+(e25in ©2 — €1 sin 6;)?

L —(Tb1 +7'b2)2}% J

ey

By solving this differential equation numerically, we
can obtain the relationship between the rotation angles 6,
and O, of Gears 1, 2. However, since the angle of the
driven gear is not described by that of the driving gear ex-
plicitly, this result can not be extended to more general
multi gear systems.

For this reason, we propose an explicit description of
the rotation angle of the driven gear in terms of the rotation
angle of the driving gear. We consider that gears rotate as
depicted in Fig. 4, where Gear 1 is the driving gear and
Gear 2 is the driven gear. In the figure, C, D are the cen-
ters of pitch circles, and 7y, ro are their radii. The centers
of rotation are A and B. The distances of A and B, A and
C, B and D are ¢, e, ea. We denote the intersections of
the line AB and the pitch circles of Gears 1, 2 by G; and
@, respectively. While the pitch circles are drawn as in-
tersecting each other in Fig. 4, they may be apart at some
rotation angle because of eccentricities of gears. The dis-
tance between A and G1, B and G4 are 7; and 75. The
counterclockwise angle ZC AG; and the clockwise angle
LD BG, are denoted by 8; and ©,.
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which satisfy

Ri+Ry=1/¢
Ry-df, =Rs- dO,

)
®3)

whered §; andd ©, are infinitesimal changes éf and©,.
We assume thak, andR, are proportional t&; and#, as

T

= ( 4
h=5 @)
Re =750 ®)

Hence, Eq. (3) is reduced to

71-df; =75 dOs. (6)
According to the cosine theoreth, andr, satisfy
r? =72 4 ;2 — 271 e cos by
T3 = 75 4+ ey’ — 2Fzes cos Og,
which imply
i = 2e; cos B + \/4(7'12 —e1?) +4e;? cos? 6,
2
5 2e5 €08 Oz + 1/4(r2? — e22) + des? cos? O
2 = 2 .
Then, since? < 72, e2 <« r2, we obtain
71 = ry + ey cosb (7
To = 19 + €9 cos Os. (8)

Now, we introduce), as a new rotation angle of Gear 2.
The angled, is defined to be 0 whefy, = 0. Using6,, we
write

02 =0, + P, ()

whereP; is the angled, atf; = 0 andf, = 0, which is the
phase of Gear 2. Then, Eq. (6) is written as

(r1 + ey cosby)db,

:{T2+62COS(02+P2)}CI62. (10)
We integrate both sides to obtain
7“101 + e sin 01
= 1rofs + €3 sin(GQ + Pg) - C, (ll)

whereC is an integration constant. Sinée = 0 whenéd,
01

C =eysin Ps. (12)

We defineAd, such that

6 (13)

"o, + Ab,
]

which represents the deviation of the rotation angle of Gear 2

from the ideal case that Gears 1, 2 have no eccentricity. By

Egs. (11), (12), and (13)\6d, is computed as follows. We
first apply the addition theorem.

7’101 + e sin 01
= 7’202 + es sin(é’g + Pg) — €3 sin P2

=172 <T—101 + A02>
T2

+ es sin (r—lel + Aag + PQ)
T2

— ey sin Py

T2 <T—101 + A02>
T2

+ es {sin <T—101 + Pg) cos Ay
]

+ cos <:—191 + P2> sin AGQ}
2

— egsin Py (14)

Since|A#,| « 1, we use the approximationss Af, 2 1
andsin A6y = A#,, which reduce the right side of Eq. (14)

to
1
Ay {rg + e5 cos (r—01 + Pg) }
2

+ 7“101 + és sin <T—101 + Pz) — €9 sin PQ.
T2
Then, we obtain

r
e;sinf; — ey sin <—191 + P2> + es sin Ps
T2

Afy = - . (15)
T + €5 CoS <—101 + Pg)
T2
Sinceles| < |r2|, we approximaté\d, as
e1sinf; — es sin (7‘_101 + P2> + e5 sin Py
N r2 (16)

T2

Multiplying Eqg. (16) byr,, we get the position deviatiok,

on the pitch circle of Gear 2, which is considered as the trans-

mission deviation.

hs = e1s8inf; — ey sin <T—101 + P2> +eysin Py (17)
]
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Figure 5. Experimental and computed results

In order to verify the expression of Eq. (16), we com-
pare the computed result of A2 with an experimental re-
sult under the conditions

ry = 32(mm), 79 = 32(mm)
e; = 0.07(mm), ey = 0.03(mm)
Py, = 4.71 (rad),

which are shown in Fig. 5. We see that the computed result
well fits the experimental result. The authors have enough
experimental data which guarantee that Eq. (16) represents
the deviation of the rotation angle with sufficient accuracy.

3.2. Transmission Deviation of Meshing Three Gears

We extend the result of the previous subsection for mesh-
ing two gears to the case of meshing three gears. The
meshing relation of a three-gears system is shown in Fig. 6,
where Gears 1, 2, and 3 are the driving, idler, and driven
gears, respectively. The symbol ”x” indicates the eccen-
tricity position of each gear. We denote the center of ro-
tation of Gear 3 by E. The positions Hs and Hj are the
intersections of the line BE with the pitch circles of Gears
2, 3. Let O3 be the counterclockwise angle of the eccen-
tricity position from the line EHs, and P; be the angle
LH2BG,.

Now, referring to Eq. (10), we write the relation of the
rotation angles @5, @3 of Gears 2, 3 as

{T‘2+62 COS(@2 + 153)} dO;
= {7‘3+63COS@3}d@3- (18)

We introduce 63 as a new rotation angle of Gear 3, which
is defined to be O when 6; = 0 and 6, = 0. Using this
definition, we write

O;=603+P; (19)

Gear 3
3
T

Gear 1 Gear 2 £

il Ny & N

N6
0; Y ©2
A GGy u/ Pitch Circle
P,

Pitch Circle  Pitch Circle

Figure 6. Meshing three gears

where P; is the angle ©3 at 6, = 0, 6> = 0 and 63 = 0,
which is the phase of Gear 3. Thus, from Egs. (9), (18),
and (19), we obtain

{ratezcos(fz + Py + P3)} d6,
= {rs + e3cos(f3 + P3)} dbs. (20)

By integrating this equation, we get

r96s + €5 sin(Gg + P + P3)
=r3fs; + ez sin(f; + Ps3)
+ ey sin(P, + P3) — es sin P;. 1)

We define Af3 such that

05 = 20, + Ab;, (22)
r3

which represents the angle deviation of Gear 3 from the
ideal case that Gears 2, 3 have no eccentricity. In a similar
way to obtain Eq. (16), we can compute Af; as

1 .
Al = r—{ez sin(02 + P + P3)
3
— ez sin <T—292 + P3>
T3
— ey sin(Py + 153) + eg sin Ps} 23)
Using Egs. (13) and (22), we combine deviations of the
rotation angles caused between Gears 1, 2 and between

Gears 2, 3 to see that 3 is represented as

0 = Lo, + :—24\.02 + Abs
3

T3
™ 1

= -——01 + _(TQAHQ + 1"3A03). (24)
T3 T3

The transmission deviation on Gear 3, that is, the position
deviation on the pitch circle is computed from the second
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—esin(Py + Fy) + eg sin Py (25) Figure 9. |hs(61)| [Pz = 0.39 (rad), Py = —2.36 (rad)]
where we used Eq. (16).
Itis obvious that we can readily extend this formula to the
cases of meshing four or more gears, and also to the case of(1) Phase adjustment of meshing gears for minimization
reduction gears. of the transmission deviation, when the positions and
magnitudes of eccentricities of gears are known.

4. Phase Adjustment (2) Sensitivity of the transmission deviation to the phases,
which implies how accurately we need to adjust phases

Using the expression (25), we can easily compute the max- to reduce the transmission deviation.

imum transmission deviation on Gear 3 with respect to the
rotation angle; of Gear 1 for each pair of phaseB,( I), For example, we compute the transmission deviation in
when the magnitudes;, e, e; of eccentricities are given. the following case:
That is, we compute
ry =16 (mm), ro=32(mm), 73 =32(mm)
h13nax (Pz,Pg) = Imax |h3 (01,P2,P3)| (26)
61€64 e1 = 0.065 (mm), e, = 0.035 (mm)

TS h<m o —ms B<n es = 0.085(mm), Py = 3.93 (rad)

where the range df, is The computed result is illustrated in Fig. 7. The minimum of

61 = {6, | 0<6, <2r-LOM(#y, 7y, 73) }, hie (P2, P3), thatis,
LCM (71, 7y, 73) is the least common multiple @, 7, 75, PT:EHI},S h3' ™ (Py, Ps)

andrq, 7o, 73 are the integer ratio of the radii, 7o, r3 of
the pitch circles. From the result, we can obtain the followingis 0.080 (mm), which is attained & = 0.39 (rad) andP; =
information: —2.36 (rad). Fig. 8 shows this phase adjustment, that is, the
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Pa (rad)

Figure 10. Region of (P,, P3) such that h5*** (P, P3) < 0.13

is, the relation of positions of eccentricities of the gears,
denoted by ”x”. In this case, |h3(;)| behaves as Fig. 9.
From Fig. 7, we can also see the sensitivity of the trans-
mission deviation to the phases P> and Ps.

Fig. 10 shows the regions of (P., P3) such that

AT (Py, P3) < 0.13,

which are shaded on the (P,, P;) plane. This result im-
plies that if the transmission deviation less than 0.13 (mm)
is required in the three-gears system, we need to adjust
(P2, P3) in the shaded region. In the present case, the
region is not so small, and we are allowed to adjust the
phases imprecisely to some extent.

On the other hand, the maximum of hJ*** (P, P3),
that is,

max h3'** (P, P:
Py, Py 3 ( 2 3)

is 0.347 (mm) attained at P>, = 0.87 (rad) and P; = 1.27
(rad). Fig. 11 illustrates the phases of the gears. In this
case, the behavior |hg(61)| is shown by Fig. 12. If we
can consider that this maxp, p, h3**® (P, P3) is small
enough, we don’t need to take the phase adjustment into
account.

5. Conclusions

We have considered the transmission deviation caused by
the eccentricity in multi gear systems from the practical
viewpoint. We presented a formula of the transmission de-
viation in terms of magnitudes and phases of eccentricities
of gears. We showed that the computed and the experi-
mental results of the transmission deviation are sufficiently
coincident, and confirmed the validity of the formulation
of this paper within the practical range (e.g., JIS B 1702-
1976 class 6)*. We illustrated that the proposed formula

Gear3

Figure 11. Location of eccentricities attaining
maxp,, P hg”‘”” (Pz, P3)
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Figure 12. |h3(6:)| [P; = 0.87 (rad), Ps = 1.27 (rad)]

can be used for appropriate phase adjustment to reduce the
transmission deviation.
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